
guardian Documentation
Release 1.0.4

Lukasz Balcerzak

February 20, 2014

Contents

i

ii

guardian Documentation, Release 1.0.4

Date February 20, 2014

Documentation:

Contents 1

http://travis-ci.org/lukaszb/django-guardian

guardian Documentation, Release 1.0.4

2 Contents

CHAPTER 1

Overview

django-guardian is an implementation of object permissions for Django providing extra authentication backend.

1.1 Features

• Object permissions for Django

• AnonymousUser support

• High level API

• Heavely tested

• Django’s admin integration

• Decorators

1.2 Incoming

• Admin templates for grappelli

1.3 Source and issue tracker

Sources are available at issue-tracker. You may also file a bug there.

1.4 Alternate projects

Django 1.2 still has only foundation for object permissions 1 and django-guardian make use of new facilities and
it is based on them. There are some other pluggable applications which does NOT require latest 1.2 version of Django.
For instance, there are great django-authority or django-permissions available out there.

1 See http://docs.djangoproject.com/en/1.2/topics/auth/#handling-object-permissions for more detail.

3

http://www.djangoproject.com/
http://www.djangoproject.com/
http://code.google.com/p/django-grappelli/
http://github.com/lukaszb/django-guardian
http://www.djangoproject.com/
http://www.djangoproject.com/
http://bitbucket.org/jezdez/django-authority/
http://bitbucket.org/diefenbach/django-permissions/
http://docs.djangoproject.com/en/1.2/topics/auth/#handling-object-permissions

guardian Documentation, Release 1.0.4

4 Chapter 1. Overview

CHAPTER 2

Installation

This application requires Django 1.2 or higher and it is only prerequisite before django-guardian may be used.

In order to install django-guardian simply use pip:

pip install django-guardian

or easy_install:

easy_install django-guardian

This would be enough to run django-guardian. However, in order to run tests or boundled example application,
there are some other requirements. See more details about the topics:

• Testing

• Example project

5

http://www.djangoproject.com/

guardian Documentation, Release 1.0.4

6 Chapter 2. Installation

CHAPTER 3

Configuration

After installation we can prepare our project for object permissions handling. In a settings module we need to add
guardian to INSTALLED_APPS:

INSTALLED_APPS = (
...
’guardian’,

)

and hook guardian’s authentication backend:

AUTHENTICATION_BACKENDS = (
’django.contrib.auth.backends.ModelBackend’, # this is default
’guardian.backends.ObjectPermissionBackend’,

)

As django-guardian supports anonymous user’s object permissions we also need to add following to our settings
module:

ANONYMOUS_USER_ID = -1

Note: Once project is configured to work with django-guardian, calling syncdbmanagement command would
create User instance for anonymous user support (with name of AnonymousUser).

We can change id to whatever we like. Project should be now ready to use object permissions.

7

guardian Documentation, Release 1.0.4

8 Chapter 3. Configuration

CHAPTER 4

Optional settings

In addition to requried ANONYMOUS_USER_ID setting, guardian has following, optional configuration variables:

4.1 GUARDIAN_RAISE_403

New in version 1.0.4.

If set to True, guardian would raise django.core.exceptions.PermissionDenied error instead of re-
turning empty django.http.HttpResponseForbidden.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

4.2 GUARDIAN_RENDER_403

New in version 1.0.4.

If set to True, guardian would try to render 403 response rather than return contentless
django.http.HttpResponseForbidden. Would use template pointed by GUARDIAN_TEMPLATE_403 to
do that. Default is False.

Warning: Remember that you cannot use both GUARDIAN_RENDER_403 AND GUARDIAN_RAISE_403 - if
both are set to True, django.core.exceptions.ImproperlyConfigured would be raised.

4.3 GUARDIAN_TEMPLATE_403

New in version 1.0.4.

Tells parts of guardian what template to use for responses with status code 403 (i.e. permission_required). Defaults
to 403.html.

9

guardian Documentation, Release 1.0.4

10 Chapter 4. Optional settings

CHAPTER 5

User Guide

5.1 Assign object permissions

Assigning object permissions should be very simple once permissions are created for models.

5.1.1 Prepare permissions

Let’s assume we have following model:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User)
created_at = models.DateTimeField(auto_now_add=True)

... and we want to be able to set custom permission view_task. We let know Django to do so by adding permissions
tuple to Meta class and our final model could look like:

class Task(models.Model):
summary = models.CharField(max_length=32)
content = models.TextField()
reported_by = models.ForeignKey(User)
created_at = models.DateTimeField(auto_now_add=True)

class Meta:
permissions = (

(’view_task’, ’View task’),
)

After we call syncdb management command our view_task permission would be added to default set of permissions.

Note: By default, Django adds 3 permissions for each registered model:

• add_modelname

• change_modelname

• delete_modelname

(where modelname is a simplified name of our model’s class). See
http://docs.djangoproject.com/en/1.2/topics/auth/#default-permissions for more detail.

11

http://docs.djangoproject.com/en/1.2/topics/auth/#default-permissions

guardian Documentation, Release 1.0.4

There is nothing new here since creation of permissions is handled by django. Now we can move to assigning object
permissions.

5.1.2 Assign object permissions

We can assign permissions for any user/group and object pairs using same, convenient function:
guardian.shortcuts.assign().

For user

Continuing our example we now can allow Joe user to view some task:

>>> boss = User.objects.create(username=’Big Boss’)
>>> joe = User.objects.create(username=’joe’)
>>> task = Task.objects.create(summary=’Some job’, content=’’, reported_by=boss)
>>> joe.has_perm(’view_task’, task)
False

Well, not so fast Joe, let us create an object permission finally:

>>> from guardian.shortcuts import assign
>>> assign(’view_task’, joe, task)
>>> joe.has_perm(’view_task’, task)
True

For group

This case doesn’t really differ from user permissions assignment. The only difference is we have to pass Group
instance rather than User.

>>> group = Group.objects.create(name=’employees’)
>>> assign(’change_task’, group, task)
>>> joe.has_perm(’change_task’, task)
False
>>> # Well, joe is not yet within an *employees* group
>>> joe.groups.add(group)
>>> joe.has_perm(’change_task’, task)
True

5.2 Check object permissions

Once we have assigned some permissions we can get into detail about verifying permissions of user or group.

5.2.1 Standard way

Normally to check if Joe is permitted to change Site objects we do this by calling has_perm method on an User
instance:

>>> joe.has_perm(’sites.change_site’)
False

And for a specific Site instance we do the same but we pass site as additional argument:

12 Chapter 5. User Guide

http://docs.djangoproject.com/en/1.2/topics/auth/#id1

guardian Documentation, Release 1.0.4

>>> site = Site.objects.get_current()
>>> joe.has_perm(’sites.change_site’, site)
False

Lets assign permission and check again:

>>> from guardian.shortcuts import assign
>>> assign(’sites.change_site’, joe, site)
<UserObjectPermission: example.com | joe | change_site>
>>> joe = User.objects.get(username=’joe’)
>>> joe.has_perm(’sites.change_site’, site)
True

This uses backend we have specified at settings module (see Configuration). More on a backend itself can be found at
Backend’s API.

5.2.2 Inside views

Besides of standard has_perm method django-guardian provides some useful helpers for object permission
checks.

get_perms

To check permissions we can use quick-and-dirty shortcut:

>>> from guardian.shortcuts import get_perms
>>>
>>> joe = User.objects.get(username=’joe’)
>>> site = Site.objects.get_current()
>>>
>>> ’change_site’ in get_perms(joe, site)
True

It is probably better to use standard has_perm method. But for Group instances it is not as easy and get_perms
could be handy here as it accepts both User and Group instances. And if we need to do some more work we can use
lower level ObjectPermissionChecker class which is described in next section.

get_objects_for_user

Sometimes there is a need to extract list of objects based on particular user, type of the object and provided permis-
sions. For instance, lets say there is a Project model at projects application with custom view_project
permission. We want to show our users projects they can actually view. This could be easily achieved using
get_objects_for_user:

from django.shortcuts import render_to_response
from django.template import RequestContext
from projects.models import Project
from guardian.shortcuts import get_objects_for_user

def user_dashboard(request, template_name=’projects/dashboard.html’):
projects = get_objects_for_user(request.user, ’projects.view_project’)
return render_to_response(template_name, {’projects’: projects},

RequestContext(request))

5.2. Check object permissions 13

guardian Documentation, Release 1.0.4

It is also possible to provide list of permissions rather than single string, own queryset (as klass argument) or control
if result should be computed with (default) or without user’s groups permissions.

See also:

Documentation for get_objects_for_user

ObjectPermissionChecker

At the core module of django-guardian there is a guardian.core.ObjectPermissionChecker
which checks permission of user/group for specific object. It caches results so it may be used at part of codes where
we check permissions more than once.

Let’s see it in action:

>>> joe = User.objects.get(username=’joe’)
>>> site = Site.objects.get_current()
>>> from guardian.core import ObjectPermissionChecker
>>> checker = ObjectPermissionChecker(joe) # we can pass user or group
>>> checker.has_perm(’change_site’, site)
True
>>> checker.has_perm(’add_site’, site) # no additional query made
False
>>> checker.get_perms(site)
[u’change_site’]

Using decorators

Standard permission_required decorator doesn’t allow to check for object permissions. django-guardian
is shipped with two decorators which may be helpful for simple object permission checks but remember that those
decorators hits database before decorated view is called - this means that if there is similar lookup made within a view
then most probably one (or more, depending on lookups) extra database query would occur.

Let’s assume we pass ’group_name’ argument to our view function which returns form to edit the group. Moreover,
we want to return 403 code if check fails. This can be simply achieved using permission_required_or_403
decorator:

>>> joe = User.objects.get(username=’joe’)
>>> foobars = Group.objects.create(name=’foobars’)
>>>
>>> from guardian.decorators import permission_required_or_403
>>> from django.http import HttpResponse
>>>
>>> @permission_required_or_403(’auth.change_group’,
>>> (Group, ’name’, ’group_name’))
>>> def edit_group(request, group_name):
>>> return HttpResponse(’some form’)
>>>
>>> from django.http import HttpRequest
>>> request = HttpRequest()
>>> request.user = joe
>>> edit_group(request, group_name=’foobars’)
<django.http.HttpResponseForbidden object at 0x102b43dd0>
>>>
>>> joe.groups.add(foobars)
>>> edit_group(request, group_name=’foobars’)
<django.http.HttpResponseForbidden object at 0x102b43e50>

14 Chapter 5. User Guide

guardian Documentation, Release 1.0.4

>>>
>>> from guardian.shortcuts import assign
>>> assign(’auth.change_group’, joe, foobars)
<UserObjectPermission: foobars | joe | change_group>
>>>
>>> edit_group(request, group_name=’foobars’)
<django.http.HttpResponse object at 0x102b8c8d0>
>>> # Note that we now get normal HttpResponse, not forbidden

More on decorators can be read at corresponding API page.

Note: Overall idea of decorators’ lookups was taken from django-authority and all credits go to it’s creator, Jannis
Leidel.

5.2.3 Inside templates

django-guardian comes with special template tag guardian.templatetags.guardian_tags.get_obj_perms()
which can store object permissions for a given user/group and instance pair. In order to use it we need to put following
inside a template:

{% load guardian_tags %}

get_obj_perms

guardian.templatetags.guardian_tags.get_obj_perms(parser, token)
Returns a list of permissions (as codename strings) for a given user/group and obj (Model instance).

Parses get_obj_perms tag which should be in format:

{% get_obj_perms user/group for obj as "context_var" %}

Example of usage (assuming flatpage and perm objects are available from context):

{% get_obj_perms request.user for flatpage as "flatpage_perms" %}

{% if "delete_flatpage" in flatpage_perms %}
Remove page

{% endif %}

Note: Please remember that superusers would always get full list of permissions for a given object.

5.3 Remove object permissions

Removing object permissions is as easy as assigning them. Just instead of guardian.shortcuts.assign()
we would use guardian.shortcuts.remove_perm() function (it accepts same arguments).

5.3.1 Example

Let’s get back to our fellow Joe:

5.3. Remove object permissions 15

http://bitbucket.org/jezdez/django-authority/

guardian Documentation, Release 1.0.4

>>> site = Site.object.get_current()
>>> joe.has_perm(’change_site’, site)
True

Now, simply remove this permission:

>>> from guardian.shortcuts import remove_perm
>>> remove_perm(’change_site’, joe, site)
>>> joe = User.objects.get(username=’joe’)
>>> joe.has_perm(’change_site’, site)
False

5.4 Admin integration

Django comes with excellent and widely used Admin application. Basically, it provides content management for
Django applications. User with access to admin panel can manage users, groups, permissions and other data provided
by system.

django-guardian comes with simple object permissions management integration for Django’s admin application.

5.4.1 Usage

It is very easy to use admin integration. Simply use GuardedModelAdmin instead of standard
django.contrib.admin.ModelAdmin class for registering models within the admin. In example, look at
following model:

from django.db import models

class Post(models.Model):
title = models.CharField(’title’, max_length=64)
slug = models.SlugField(max_length=64)
content = models.TextField(’content’)
created_at = models.DateTimeField(auto_now_add=True, db_index=True)

class Meta:
permissions = (

(’view_post’, ’Can view post’),
)
get_latest_by = ’created_at’

def __unicode__(self):
return self.title

@models.permalink
def get_absolute_url(self):

return {’post_slug’: self.slug}

We want to register Post model within admin application. Normally, we would do this as follows within admin.py
file of our application:

from django.contrib import admin

from example_project.posts.models import Post

16 Chapter 5. User Guide

guardian Documentation, Release 1.0.4

class PostAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("title",)}
list_display = (’title’, ’slug’, ’created_at’)
search_fields = (’title’, ’content’)
ordering = (’-created_at’,)
date_hierarchy = ’created_at’

admin.site.register(Post, PostAdmin)

If we would like to add object permissions management for Post model we would need to change PostAdmin base
class into GuardedModelAdmin. Our code could look as follows:

from django.contrib import admin

from example_project.posts.models import Post

from guardian.admin import GuardedModelAdmin

class PostAdmin(GuardedModelAdmin):
prepopulated_fields = {"slug": ("title",)}
list_display = (’title’, ’slug’, ’created_at’)
search_fields = (’title’, ’content’)
ordering = (’-created_at’,)
date_hierarchy = ’created_at’

admin.site.register(Post, PostAdmin)

And thats it. We can now navigate to change post page and just next to the history link we can click Object permissions
button to manage row level permissions.

Note: Example above is shipped with django-guardian package with the example project.

5.5 Caveats

5.5.1 Orphaned object permissions

Permissions, including so called per object permissions, are sometimes tricky to manage. One case is how we can
manage permissions that are no longer used. Normally, there should be no problems, however with some particular
setup it is possible to reuse primary keys of database models which were used in the past once. We will not answer
how bad such situation can be - instead we will try to cover how we can deal with this.

Let’s imagine our table has primary key to the filesystem path. We have a record with pk equal to
/home/www/joe.config. User jane has read access to joe’s configuration and we store that information in
database by creating guardian’s object permissions. Now, joe user removes account from our site and another user
creates account with joe as username. The problem is that if we haven’t removed object permissions explicitly in the
process of first joe account removal, jane still has read permissions for joe’s configuration file - but this is another user.

There is no easy way to deal with orphaned permissions as they are not foreign keyed with objects directly. Even if
they would, there are some database engines - or ON DELETE rules - which restricts removal of related objects.

Important: It is extremely important to remove UserObjectPermission and GroupObjectPermission
as we delete objects for which permissions are defined.

5.5. Caveats 17

guardian Documentation, Release 1.0.4

Guardian comes with utility function which tries to help to remove orphaned object permissions. Remember - those
are only helpers. Applications should remove those object permissions explicitly by itself.

Taking our previous example, our application should remove user object for joe, however, permisions for joe user
assigned to jane would NOT be removed. In this case, it would be very easy to remove user/group object permissions
if we connect proper action with proper signal. This could be achieved by following snippet:

from django.contrib.auth.models import User
from django.contrib.contenttypes.models import ContentType
from django.db.models import Q
from django.db.models.signals import pre_delete
from guardian.models import UserObjectPermission
from guardian.models import GroupObjectPermission

def remove_obj_perms_connected_with_user(sender, instance, **kwargs):
filters = Q(content_type=ContentType.objects.get_for_model(instance),

object_pk=instance.pk)
UserObjectPermission.objects.filter(filters).delete()
GroupObjectPermission.objects.filter(filters).delete()

pre_delete.connect(remove_obj_perms_connected_with_user, sender=User)

This signal handler would remove all object permissions connected with user just before user is actually removed.

If we forgot to add such handlers, we may still remove orphaned object permissions by using
clean_orphan_obj_perms command. If our application uses celery, it is also very easy to remove orphaned
permissions periodically with guardian.utils.clean_orphan_obj_perms() function. We would still
strongly advise to remove orphaned object permissions explicitly (i.e. at view that confirms object removal or us-
ing signals as described above).

See also:

• guardian.utils.clean_orphan_obj_perms()

• clean_orphan_obj_perms

18 Chapter 5. User Guide

http://www.celeryproject.org/

CHAPTER 6

API Reference

6.1 Admin

6.1.1 GuardedModelAdmin

class guardian.admin.GuardedModelAdmin(model, admin_site)
Extends django.contrib.admin.ModelAdmin class. Provides some extra views for object per-
missions management at admin panel. It also changes default change_form_template option to
’admin/guardian/model/change_form.html’ which is required for proper url (object permissions
related) being shown at the model pages.

Extra options

GuardedModelAdmin.obj_perms_manage_template

Default: admin/guardian/model/obj_perms_manage.html

GuardedModelAdmin.obj_perms_manage_user_template

Default: admin/guardian/model/obj_perms_manage_user.html

GuardedModelAdmin.obj_perms_manage_group_template

Default: admin/guardian/model/obj_perms_manage_group.html

GuardedModelAdmin.user_can_access_owned_objects_only

Default: False

If this would be set to True, request.user would be used to filter out objects he or
she doesn’t own (checking user field of used model - field name may be overridden by
user_owned_objects_field option.

Note: Please remember that this will NOT affect superusers! Admins would still see all items.

GuardedModelAdmin.user_owned_objects_field

Default: user

Usage example

Just use GuardedModelAdmin instead of django.contrib.admin.ModelAdmin.

from django.contrib import admin
from guardian.admin import GuardedModelAdmin
from myapp.models import Author

19

guardian Documentation, Release 1.0.4

class AuthorAdmin(GuardedModelAdmin):
pass

admin.site.register(Author, AuthorAdmin)

get_obj_perms_base_context(request, obj)
Returns context dictionary with common admin and object permissions related content.

get_obj_perms_manage_group_form()
Returns form class for group object permissions management. By default
AdminGroupObjectPermissionsForm is returned.

get_obj_perms_manage_group_template()
Returns object permissions for group admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return
"admin/guardian/grappelli/obj_perms_manage_group.html".

get_obj_perms_manage_template()
Returns main object permissions admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return
"admin/guardian/grappelli/obj_perms_manage.html".

get_obj_perms_manage_user_form()
Returns form class for user object permissions management. By default
AdminUserObjectPermissionsForm is returned.

get_obj_perms_manage_user_template()
Returns object permissions for user admin template. May be overridden if need to change it dynamically.

Note: If INSTALLED_APPS contains grappelli this function would return
"admin/guardian/grappelli/obj_perms_manage_user.html".

get_urls()
Extends standard admin model urls with the following:

•.../permissions/

•.../permissions/user-manage/<user_id>/

•.../permissions/group-manage/<group_id>/

Note: ... above are standard, instance detail url (i.e. /admin/flatpages/1/)

obj_perms_manage_group_view(request, object_pk, group_id)
Manages selected groups’ permissions for current object.

obj_perms_manage_user_view(request, object_pk, user_id)
Manages selected users’ permissions for current object.

obj_perms_manage_view(request, object_pk)
Main object permissions view. Presents all users and groups with any object permissions for the current
model instance. Users or groups without object permissions for related instance would not be shown. In
order to add or manage user or group one should use links or forms presented within the page.

20 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

6.2 Backends

6.2.1 ObjectPermissionBackend

class guardian.backends.ObjectPermissionBackend
x.__init__(...) initializes x; see help(type(x)) for signature

has_perm(user_obj, perm, obj=None)
Returns True if given user_obj has perm for obj. If no obj is given, False is returned.

Note: Remember, that if user is not active, all checks would return False.

Main difference between Django’s ModelBackend is that we can pass obj instance here and perm
doesn’t have to contain app_label as it can be retrieved from given obj.

Inactive user support

If user is authenticated but inactive at the same time, all checks always returns False.

6.3 Core

6.3.1 ObjectPermissionChecker

class guardian.core.ObjectPermissionChecker(user_or_group=None)
Generic object permissions checker class being the heart of django-guardian.

Note: Once checked for single object, permissions are stored and we don’t hit database again if another check
is called for this object. This is great for templates, views or other request based checks (assuming we don’t
have hundreds of permissions on a single object as we fetch all permissions for checked object).

On the other hand, if we call has_perm for perm1/object1, then we change permission state and call
has_perm again for same perm1/object1 on same instance of ObjectPermissionChecker we won’t see a differ-
ence as permissions are already fetched and stored within cache dictionary.

Parameters user_or_group – should be an User, AnonymousUser or

Group instance

get_local_cache_key(obj)
Returns cache key for _obj_perms_cache dict.

get_perms(obj)
Returns list of codename‘s of all permissions for given obj.

Parameters obj – Django model instance for which permission should be checked

has_perm(perm, obj)
Checks if user/group has given permission for object.

Parameters

• perm – permission as string, may or may not contain app_label prefix (if not prefixed, we
grab app_label from obj)

• obj – Django model instance for which permission should be checked

6.2. Backends 21

guardian Documentation, Release 1.0.4

6.4 Decorators

6.4.1 permission_required

guardian.decorators.permission_required(perm, lookup_variables=None, **kwargs)
Decorator for views that checks whether a user has a particular permission enabled.

Optionally, instances for which check should be made may be passed as an second argument or as a tuple
parameters same as those passed to get_object_or_404 but must be provided as pairs of strings.

Parameters

• login_url – if denied, user would be redirected to location set by this parameter. Defaults to
django.conf.settings.LOGIN_URL.

• redirect_field_name – name of the parameter passed if redirected. Defaults to
django.contrib.auth.REDIRECT_FIELD_NAME.

• return_403 – if set to True then instead of redirecting to the login page, response with
status code 403 is returned (django.http.HttpResponseForbidden instance or
rendered template - see GUARDIAN_RENDER_403). Defaults to False.

• accept_global_perms – if set to True, then object level permission would
be required only if user does NOT have global permission for target
model. If turned on, makes this decorator like an extension over standard
django.contrib.admin.decorators.permission_required as it would
check for global permissions first. Defaults to False.

Examples:

@permission_required(’auth.change_user’, return_403=True)
def my_view(request):

return HttpResponse(’Hello’)

@permission_required(’auth.change_user’, (User, ’username’, ’username’))
def my_view(request, username):

user = get_object_or_404(User, username=username)
return user.get_absolute_url()

@permission_required(’auth.change_user’,
(User, ’username’, ’username’, ’groups__name’, ’group_name’))

def my_view(request, username, group_name):
user = get_object_or_404(User, username=username,

group__name=group_name)
return user.get_absolute_url()

6.4.2 permission_required_or_403

guardian.decorators.permission_required_or_403(perm, *args, **kwargs)
Simple wrapper for permission_required decorator.

Standard Django’s permission_required decorator redirects user to login page in case permission check failed.
This decorator may be used to return HttpResponseForbidden (status 403) instead of redirection.

The only difference between permission_required decorator is that this one always set return_403
parameter to True.

22 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

6.5 Forms

6.5.1 UserObjectPermissionsForm

class guardian.forms.UserObjectPermissionsForm(user, *args, **kwargs)
Bases: guardian.forms.BaseObjectPermissionsForm

Object level permissions management form for usage with User instances.

Example usage:

from django.contrib.auth.models import User
from django.shortcuts import get_object_or_404
from myapp.models import Post
from guardian.forms import UserObjectPermissionsForm

def my_view(request, post_slug, user_id):
user = get_object_or_404(User, id=user_id)
post = get_object_or_404(Post, slug=post_slug)
form = UserObjectPermissionsForm(user, post, request.POST or None)
if request.method == ’POST’ and form.is_valid():

form.save_obj_perms()
...

save_obj_perms()
Saves selected object permissions by creating new ones and removing those which were not selected but
already exists.

Should be called after form is validated.

6.5.2 GroupObjectPermissionsForm

class guardian.forms.GroupObjectPermissionsForm(group, *args, **kwargs)
Bases: guardian.forms.BaseObjectPermissionsForm

Object level permissions management form for usage with Group instances.

Example usage:

from django.contrib.auth.models import Group
from django.shortcuts import get_object_or_404
from myapp.models import Post
from guardian.forms import GroupObjectPermissionsForm

def my_view(request, post_slug, group_id):
group = get_object_or_404(Group, id=group_id)
post = get_object_or_404(Post, slug=post_slug)
form = GroupObjectPermissionsForm(group, post, request.POST or None)
if request.method == ’POST’ and form.is_valid():

form.save_obj_perms()
...

save_obj_perms()
Saves selected object permissions by creating new ones and removing those which were not selected but
already exists.

Should be called after form is validated.

6.5. Forms 23

guardian Documentation, Release 1.0.4

6.5.3 BaseObjectPermissionsForm

class guardian.forms.BaseObjectPermissionsForm(obj, *args, **kwargs)
Base form for object permissions management. Needs to be extended for usage with users and/or groups.

Parameters obj – Any instance which form would use to manage object

permissions”

are_obj_perms_required()
Indicates if at least one object permission should be required. Default: False.

get_obj_perms_field()
Returns field instance for object permissions management. May be replaced entirely.

get_obj_perms_field_choices()
Returns choices for object permissions management field. Default: list of tuples (codename, name)
for each Permission instance for the managed object.

get_obj_perms_field_class()
Returns object permissions management field’s base class. Default:
django.forms.MultipleChoiceField.

get_obj_perms_field_initial()
Returns initial object permissions management field choices. Default: [] (empty list).

get_obj_perms_field_label()
Returns label of the object permissions management field. Defualt: _("Permissions") (marked to be
translated).

get_obj_perms_field_name()
Returns name of the object permissions management field. Default: permission.

get_obj_perms_field_widget()
Returns object permissions management field’s widget base class. Default:
django.forms.SelectMultiple.

save_obj_perms()
Must be implemented in concrete form class. This method should store selected object permissions.

6.6 Management commands

class guardian.management.commands.clean_orphan_obj_perms.Command
clean_orphan_obj_perms command is a tiny wrapper around guardian.utils.clean_orphan_obj_perms().

Usage:

$ python manage.py clean_orphan_obj_perms
Removed 11 object permission entries with no targets

6.7 Managers

6.7.1 UserObjectPermissionManager

class guardian.managers.UserObjectPermissionManager

24 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

assign(perm, user, obj)
Assigns permission with given perm for an instance obj and user.

remove_perm(perm, user, obj)
Removes permission perm for an instance obj and given user.

6.7.2 GroupObjectPermissionManager

class guardian.managers.GroupObjectPermissionManager

assign(perm, group, obj)
Assigns permission with given perm for an instance obj and group.

remove_perm(perm, group, obj)
Removes permission perm for an instance obj and given group.

6.8 Mixins

New in version 1.0.4.

6.8.1 LoginRequiredMixin

class guardian.mixins.LoginRequiredMixin
A login required mixin for use with class based views. This Class is a light wrapper around the login_required
decorator and hence function parameters are just attributes defined on the class.

Due to parent class order traversal this mixin must be added as the left most mixin of a view.

The mixin has exaclty the same flow as login_required decorator:

If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in
the query string. Example: /accounts/login/?next=/polls/3/.

If the user is logged in, execute the view normally. The view code is free to assume the user is logged
in.

Class Settings

LoginRequiredMixin.redirect_field_name

Default: ’next’

LoginRequiredMixin.login_url

Default: settings.LOGIN_URL

x.__init__(...) initializes x; see help(type(x)) for signature

6.8.2 PermissionRequiredMixin

class guardian.mixins.PermissionRequiredMixin
A view mixin that verifies if the current logged in user has the specified permission by wrapping the
request.user.has_perm(..) method.

6.8. Mixins 25

guardian Documentation, Release 1.0.4

If a get_object() method is defined either manually or by including another mixin (for example
SingleObjectMixin) or self.object is defiend then the permission will be tested against that specific
instance.

The mixin does the following:

If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the
query string. Example: /accounts/login/?next=/polls/3/.

If the raise_exception is set to True than rather than redirect to login page a PermissionDenied (403)
is raised.

If the user is logged in, and passes the permission check than the view is executed normally.

Example Usage:

class SecureView(PermissionRequiredMixin, View):
...
permission_required = ’auth.change_user’
...

Class Settings

PermissionRequiredMixin.permission_required

Default: None, must be set to either a string or list of strings in format:
<app_label>.<permission_codename>.

PermissionRequiredMixin.login_url

Default: settings.LOGIN_URL

PermissionRequiredMixin.redirect_field_name

Default: ’next’

PermissionRequiredMixin.return_403

Default: False. Returns 403 error page instead of redirecting user.

PermissionRequiredMixin.raise_exception

Default: False

permission_required - the permission to check of form “<app_label>.<permission codename>”
i.e. ‘polls.can_vote’ for a permission on a model in the polls application.

x.__init__(...) initializes x; see help(type(x)) for signature

check_permissions(request)
Checks if request.user has all permissions returned by get_required_permissions method.

Parameters request – Original request.

get_required_permissions(request=None)
Returns list of permissions in format <app_label>.<codename> that should be checked against re-
quest.user and object. By default, it returns list from permission_required attribute.

Parameters request – Original request.

on_permission_check_fail(request, response, obj=None)
Method called upon permission check fail. By default it does nothing and should be overridden, if needed.

Parameters

• request – Original request

26 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

• response – 403 response returned by check_permissions method.

• obj – Object that was fetched from the view (using get_object method or object
attribute, in that order).

6.9 Models

6.9.1 BaseObjectPermission

class guardian.models.BaseObjectPermission(*args, **kwargs)
Abstract ObjectPermission class.

6.9.2 UserObjectPermission

class guardian.models.UserObjectPermission(*args, **kwargs)
Manager: UserObjectPermissionManager

6.9.3 GroupObjectPermission

class guardian.models.GroupObjectPermission(*args, **kwargs)
Manager: GroupObjectPermissionManager

6.10 Shortcuts

Convenient shortcuts to manage or check object permissions.

6.10.1 assign

guardian.shortcuts.assign(perm, user_or_group, obj=None)
Assigns permission to user/group and object pair.

Parameters

• perm – proper permission for given obj, as string (in format: app_label.codename
or codename). If obj is not given, must be in format app_label.codename.

• user_or_group – instance of User, AnonymousUser or Group; passing any other ob-
ject would raise guardian.exceptions.NotUserNorGroup exception

• obj – persisted Django’s Model instance or None if assigning global permission. Default
is None.

We can assign permission for Model instance for specific user:

>>> from django.contrib.sites.models import Site
>>> from django.contrib.auth.models import User, Group
>>> from guardian.shortcuts import assign
>>> site = Site.objects.get_current()
>>> user = User.objects.create(username=’joe’)
>>> assign("change_site", user, site)
<UserObjectPermission: example.com | joe | change_site>

6.9. Models 27

guardian Documentation, Release 1.0.4

>>> user.has_perm("change_site", site)
True

... or we can assign permission for group:

>>> group = Group.objects.create(name=’joe-group’)
>>> user.groups.add(group)
>>> assign("delete_site", group, site)
<GroupObjectPermission: example.com | joe-group | delete_site>
>>> user.has_perm("delete_site", site)
True

Global permissions

This function may also be used to assign standard, global permissions if obj parameter is omitted. Added
Permission would be returned in that case:

>>> assign("sites.change_site", user)
<Permission: sites | site | Can change site>

6.10.2 remove_perm

guardian.shortcuts.remove_perm(perm, user_or_group=None, obj=None)
Removes permission from user/group and object pair.

Parameters

• perm – proper permission for given obj, as string (in format: app_label.codename
or codename). If obj is not given, must be in format app_label.codename.

• user_or_group – instance of User, AnonymousUser or Group; passing any other ob-
ject would raise guardian.exceptions.NotUserNorGroup exception

• obj – persisted Django’s Model instance or None if assigning global permission. Default
is None.

6.10.3 get_perms

guardian.shortcuts.get_perms(user_or_group, obj)
Returns permissions for given user/group and object pair, as list of strings.

6.10.4 get_perms_for_model

guardian.shortcuts.get_perms_for_model(cls)
Returns queryset of all Permission objects for the given class. It is possible to pass Model as class or instance.

6.10.5 get_users_with_perms

guardian.shortcuts.get_users_with_perms(obj, attach_perms=False, with_superusers=False,
with_group_users=True)

Returns queryset of all User objects with any object permissions for the given obj.

Parameters

• obj – persisted Django’s Model instance

28 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

• attach_perms – Default: False. If set to True result would be dictionary of User
instances with permissions’ codenames list as values. This would fetch users eagerly!

• with_superusers – Default: False. If set to True result would contain all superusers.

• with_group_users – Default: True. If set to False result would not contain those users
who have only group permissions for given obj.

Example:

>>> from django.contrib.auth.models import User
>>> from django.contrib.flatpages.models import FlatPage
>>> from guardian.shortcuts import assign, get_users_with_perms
>>>
>>> page = FlatPage.objects.create(title=’Some page’, path=’/some/page/’)
>>> joe = User.objects.create_user(’joe’, ’joe@example.com’, ’joesecret’)
>>> assign(’change_flatpage’, joe, page)
>>>
>>> get_users_with_perms(page)
[<User: joe>]
>>>
>>> get_users_with_perms(page, attach_perms=True)
{<User: joe>: [u’change_flatpage’]}

6.10.6 get_groups_with_perms

guardian.shortcuts.get_groups_with_perms(obj, attach_perms=False)
Returns queryset of all Group objects with any object permissions for the given obj.

Parameters

• obj – persisted Django’s Model instance

• attach_perms – Default: False. If set to True result would be dictionary of Group
instances with permissions’ codenames list as values. This would fetch groups eagerly!

Example:

>>> from django.contrib.auth.models import Group
>>> from django.contrib.flatpages.models import FlatPage
>>> from guardian.shortcuts import assign, get_groups_with_perms
>>>
>>> page = FlatPage.objects.create(title=’Some page’, path=’/some/page/’)
>>> admins = Group.objects.create(name=’Admins’)
>>> assign(’change_flatpage’, group, page)
>>>
>>> get_groups_with_perms(page)
[<Group: admins>]
>>>
>>> get_groups_with_perms(page, attach_perms=True)
{<Group: admins>: [u’change_flatpage’]}

6.10.7 get_objects_for_user

guardian.shortcuts.get_objects_for_user(user, perms, klass=None, use_groups=True,
any_perm=False)

Returns queryset of objects for which a given user has all permissions present at perms.

Parameters

6.10. Shortcuts 29

guardian Documentation, Release 1.0.4

• user – User instance for which objects would be returned

• perms – single permission string, or sequence of permission strings which should be
checked. If klass parameter is not given, those should be full permission names rather
than only codenames (i.e. auth.change_user). If more than one permission is present
within sequence, their content type must be the same or MixedContentTypeError
exception would be raised.

• klass – may be a Model, Manager or QuerySet object. If not given this parameter would be
computed based on given params.

• use_groups – if False, wouldn’t check user’s groups object permissions. Default is True.

• any_perm – if True, any of permission in sequence is accepted

Raises

• MixedContentTypeError – when computed content type for perms and/or klass
clashes.

• WrongAppError – if cannot compute app label for given perms/ klass.

Example:

>>> from guardian.shortcuts import get_objects_for_user
>>> joe = User.objects.get(username=’joe’)
>>> get_objects_for_user(joe, ’auth.change_group’)
[]
>>> from guardian.shortcuts import assign
>>> group = Group.objects.create(’some group’)
>>> assign(’auth.change_group’, joe, group)
>>> get_objects_for_user(joe, ’auth.change_group’)
[<Group some group>]

The permission string can also be an iterable. Continuing with the previous example:

>>> get_objects_for_user(joe, [’auth.change_group’, ’auth.delete_group’])
[]
>>> get_objects_for_user(joe, [’auth.change_group’, ’auth.delete_group’], any_perm=True)
[<Group some group>]
>>> assign(’auth.delete_group’, joe, group)
>>> get_objects_for_user(joe, [’auth.change_group’, ’auth.delete_group’])
[<Group some group>]

6.10.8 get_objects_for_group

guardian.shortcuts.get_objects_for_group(group, perms, klass=None, any_perm=False)
Returns queryset of objects for which a given group has all permissions present at perms.

Parameters

• group – Group instance for which objects would be returned.

• perms – single permission string, or sequence of permission strings which should be
checked. If klass parameter is not given, those should be full permission names rather
than only codenames (i.e. auth.change_user). If more than one permission is present
within sequence, their content type must be the same or MixedContentTypeError
exception would be raised.

• klass – may be a Model, Manager or QuerySet object. If not given this parameter would be
computed based on given params.

30 Chapter 6. API Reference

guardian Documentation, Release 1.0.4

• any_perm – if True, any of permission in sequence is accepted

Raises

• MixedContentTypeError – when computed content type for perms and/or klass
clashes.

• WrongAppError – if cannot compute app label for given perms/ klass.

Example:

Let’s assume we have a Task model belonging to the tasker app with the default add_task, change_task and
delete_task permissions provided by Django:

>>> from guardian.shortcuts import get_objects_for_group
>>> from tasker import Task
>>> group = Group.objects.create(’some group’)
>>> task = Task.objects.create(’some task’)
>>> get_objects_for_group(group, ’tasker.add_task’)
[]
>>> from guardian.shortcuts import assign
>>> assign(’tasker.add_task’, group, task)
>>> get_objects_for_group(group, ’tasker.add_task’)
[<Task some task>]

The permission string can also be an iterable. Continuing with the previous example:

>>> get_objects_for_group(group, [’tasker.add_task’, ’tasker.delete_task’])
[]
>>> assign(’tasker.delete_task’, group, task)
>>> get_objects_for_group(group, [’tasker.add_task’, ’tasker.delete_task’])
[<Task some task>]

6.11 Utilities

django-guardian helper functions.

Functions defined within this module should be considered as django-guardian’s internal functionality. They are not
guaranteed to be stable - which means they actual input parameters/output type may change in future releases.

6.11.1 get_anonymous_user

guardian.utils.get_anonymous_user()
Returns User instance (not AnonymousUser) depending on ANONYMOUS_USER_ID configuration.

6.11.2 get_identity

guardian.utils.get_identity(identity)
Returns (user_obj, None) or (None, group_obj) tuple depending on what is given. Also accepts AnonymousUser
instance but would return User instead - it is convenient and needed for authorization backend to support
anonymous users.

Parameters identity – either User or Group instance

Raises NotUserNorGroup if cannot return proper identity instance

6.11. Utilities 31

guardian Documentation, Release 1.0.4

Examples:

>>> user = User.objects.create(username=’joe’)
>>> get_identity(user)
(<User: joe>, None)

>>> group = Group.objects.create(name=’users’)
>>> get_identity(group)
(None, <Group: users>)

>>> anon = AnonymousUser()
>>> get_identity(anon)
(<User: AnonymousUser>, None)

>>> get_identity("not instance")
...
NotUserNorGroup: User/AnonymousUser or Group instance is required (got)

6.11.3 clean_orphan_obj_perms

guardian.utils.clean_orphan_obj_perms()
Seeks and removes all object permissions entries pointing at non-existing targets.

Returns number of removed objects.

6.12 Template tags

django-guardian template tags. To use in a template just put the following load tag inside a template:

{% load guardian_tags %}

6.12.1 get_obj_perms

guardian.templatetags.guardian_tags.get_obj_perms(parser, token)
Returns a list of permissions (as codename strings) for a given user/group and obj (Model instance).

Parses get_obj_perms tag which should be in format:

{% get_obj_perms user/group for obj as "context_var" %}

Example of usage (assuming flatpage and perm objects are available from context):

{% get_obj_perms request.user for flatpage as "flatpage_perms" %}

{% if "delete_flatpage" in flatpage_perms %}
Remove page

{% endif %}

Note: Please remember that superusers would always get full list of permissions for a given object.

32 Chapter 6. API Reference

CHAPTER 7

Development

7.1 Example project

Example project should be boundled with archive and be available at example_project. Before you can run it,
some requirements have to be met. Those are easily installed using following command at example project’s directory:

$ pip install -r requirements.txt

And last thing before we can run example project is to create sqlite database:

$ python manage.py syncdb

Finally we can run dev server:

$ python manage.py runserver

Project is really basic and shows almost nothing but eventually it should expose some django-guardian function-
ality.

7.2 Testing

7.2.1 Introduction

django-guardian is extending capabilities of Django’s authorization facilities and as so, it changes it’s security
somehow. It is extremaly important to provide as simplest API Reference as possible.

According to OWASP, broken authentication is one of most commonly security issue exposed in web applications.

Having this on mind we tried to build small set of necessary functions and created a lot of testing scenarios. Neverte-
less, if anyone would found a bug in this application, please take a minute and file it at issue-tracker. Moreover, if some-
one would spot a security hole (a bug that might affect security of systems that use django-guardian as permission
management library), please DO NOT create a public issue but contact me directly (lukaszbalcerzak@gmail.com).

7.2.2 Running tests

Tests are run by Django’s buildin test runner. To call it simply run:

$ python setup.py test

or inside a project with guardian set at INSTALLED_APPS:

33

http://www.owasp.org/
http://www.owasp.org/index.php/Top_10_2010-A3
http://github.com/lukaszb/django-guardian
mailto:lukaszbalcerzak@gmail.com

guardian Documentation, Release 1.0.4

$ python manage.py test guardian

7.2.3 Coverage support

Coverage is a tool for measuring code coverage of Python programs. It is great for tests and we use it as a backup
- we try to cover 100% of the code used by django-guardian. This of course does NOT mean that if all of the
codebase is covered by tests we can be sure there is no bug (as specification of almost all applications requries some
unique scenarios to be tested). On the other hand it definitely helps to track missing parts.

To run tests with coverage support and show the report after we have provided simple bash script which can by called
by running:

$./run_test_and_report.sh

Result should be somehow similar to following:

(...)
..
--
Ran 48 tests in 2.516s

OK
Destroying test database ’default’...
Name Stmts Exec Cover Missing

guardian/__init__ 4 4 100%
guardian/backends 20 20 100%
guardian/conf/__init__ 1 1 100%
guardian/core 29 29 100%
guardian/exceptions 8 8 100%
guardian/management/__init__ 10 10 100%
guardian/managers 40 40 100%
guardian/models 36 36 100%
guardian/shortcuts 30 30 100%
guardian/templatetags/__init__ 1 1 100%
guardian/templatetags/guardian_tags 39 39 100%
guardian/utils 13 13 100%

TOTAL 231 231 100%

7.2.4 Tox

New in version 1.0.4.

We also started using tox to ensure django-guardian‘s tests would pass on all supported Python and Django
versions (see Supported versions). To use it, simply install tox:

pip install tox

and run it within django-guardian checkout directory:

tox

First time should take some time (it needs to create separate virtual environments and pull dependencies) but would
ensure everything is fine.

34 Chapter 7. Development

http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/
http://pypi.python.org/pypi/tox

guardian Documentation, Release 1.0.4

7.2.5 Travis CI

New in version 1.0.4. Recently we have added support for Travis, continuous integration server so it is even more
easy to follow if test fails with new commits: http://travis-ci.org/#!/lukaszb/django-guardian.

7.3 Supported versions

django-guardian supports Python 2.6/2.7 and Django 1.2+. Also, we support django-grappelli 2.3.5.

7.3.1 Rules

1. We would support both Python 2.7 and Python 2.6 (until Django drops support for 2.6, if ever).

2. We would support two latest Django stable versions. In example: once Django 1.4 would become final, we
are dropping support for Django 1.2 as two last stable versions would be 1.3 and 1.4.

3. Support for django-grappelli is somewhat experimental. Nevertheless, our intention is to support
django-grappelli last stable version.

7.4 Changelog

7.4.1 Release 1.0.4 (Jul 15, 2012)

• Added GUARDIAN_RENDER_403 and GUARDIAN_RAISE_403 settings (#40)

• Updated docstring for get_obj_perms (#43)

• Updated codes to run with newest django-grappelli (#51)

• Fixed problem with building a RPM package (#50)

• Updated caveats docs related with oprhaned object permissions (#47)

• Updated permission_required docstring (#49)

• Added accept_global_perms for decorators (#49)

• Fixed problem with MySQL and booleans (#56)

• Added flag to check for any permission in get_objects_for_user and get_objects_for_group
(#65)

• Added missing tag closing at template (#63)

• Added view mixins related with authorization and authentication (#73)

• Added tox support

• Added Travis support

7.4.2 Release 1.0.3 (Jul 25, 2011)

• Added get_objects_for_group shortcut (thanks to Rafael Ponieman)

• Added user_can_access_owned_objects_only flag to GuardedModelAdmin

• Updated and fixed issues with example app (thanks to Bojan Mihelac)

7.3. Supported versions 35

http://travis-ci.org/lukaszb/django-guardian
http://travis-ci.org/
http://travis-ci.org/#!/lukaszb/django-guardian
http://tox.testrun.org/
http://travis-ci.org/

guardian Documentation, Release 1.0.4

• Minor typo fixed at documentation

• Included ADC theme for documentation

7.4.3 Release 1.0.2 (Apr 12, 2011)

• get_users_with_perms now accepts with_group_users flag

• Fixed group_id issue at admin templates

• Small fix for documentation building process

• It’s 2011 (updated dates within this file)

7.4.4 Release 1.0.1 (Mar 25, 2011)

• get_users_with_perms now accepts with_superusers flag

• Small fix for documentation building process

7.4.5 Release 1.0.0 (Jan 27, 2011)

• A final v1.0 release!

7.4.6 Release 1.0.0.beta2 (Jan 14, 2011)

• Added get_objects_for_user shortcut function

• Added few tests

• Fixed issues related with django.contrib.auth tests

• Removed example project from source distribution

7.4.7 Release 1.0.0.beta1 (Jan 11, 2011)

• Simplified example project

• Fixed issues related with test suite

• Added ability to clear orphaned object permissions

• Added clean_orphan_obj_perms management command

• Documentation cleanup

• Added grappelli admin templates

7.4.8 Release 1.0.0.alpha2 (Dec 2, 2010)

• Added possibility to operate with global permissions for assign and remove_perm shortcut functions

• Added possibility to generate PDF documentation

• Fixed some tests

36 Chapter 7. Development

https://github.com/sehmaschine/django-grappelli

guardian Documentation, Release 1.0.4

7.4.9 Release 1.0.0.alpha1 (Nov 23, 2010)

• Fixed admin templates not included in MANIFEST.in

• Fixed admin integration codes

7.4.10 Release 1.0.0.pre (Nov 23, 2010)

• Added admin integration

• Added reusable forms for object permissions management

7.4.11 Release 0.2.3 (Nov 17, 2010)

• Added guardian.shortcuts.get_users_with_perms function

• Added AUTHORS file

7.4.12 Release 0.2.2 (Oct 19, 2010)

• Fixed migrations order (thanks to Daniel Rech)

7.4.13 Release 0.2.1 (Oct 3, 2010)

• Fixed migration (it wasn’t actually updating object_pk field)

7.4.14 Release 0.2.0 (Oct 3, 2010)

Fixes

• #4: guardian now supports models with not-integer primary keys and they don’t need to be called “id”.

Important: For 0.1.X users: it is required to migrate guardian in your projects. Add south to
INSTALLED_APPS and run:

python manage.py syncdb
python manage.py migrate guardian 0001 --fake
python manage.py migrate guardian

Improvements

• Added South migrations support

7.4.15 Release 0.1.1 (Sep 27, 2010)

Improvements

• Added view decorators: permission_required and permission_required_403

7.4. Changelog 37

http://south.aeracode.org/

guardian Documentation, Release 1.0.4

7.4.16 Release 0.1.0 (Jun 6, 2010)

• Initial public release

38 Chapter 7. Development

CHAPTER 8

License

Copyright (c) 2010-2011 Lukasz Balcerzak <lukaszbalcerzak@gmail.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

39

guardian Documentation, Release 1.0.4

40 Chapter 8. License

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

41

guardian Documentation, Release 1.0.4

42 Chapter 9. Indices and tables

Python Module Index

g
guardian.admin, ??
guardian.backends, ??
guardian.core, ??
guardian.decorators, ??
guardian.forms, ??
guardian.managers, ??
guardian.mixins, ??
guardian.models, ??
guardian.shortcuts, ??
guardian.templatetags.guardian_tags, ??
guardian.utils, ??

43

